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Stress-orientation-strain relationships in 
non-crystalline polymers 
Part 2 The two-component model developed and applied to 

rubber- like deformation 

D.J.  BROWN,  A. H. W I N D L E  
Department of Metallurgy and Materials Science, Unversity of Cambridge, Cambridge, UK 

The approach to non-crystalline polymer deformation set out in Part 1 [1 ], involving the 
resolution of deformation into orientational and non-orientational components, is 
employed as the foundation of a simple deformation model applicable to the rubbery 
state. The analysis is performed with reference to an assemblage of mobile orienting units 
of idealized ellipsoidal shape, free to undergo orientational and extensional motion but 
subject to constraint arising from both intramolecular and intermolecular sources. 
Stress-strain-orientation relationships are calculated and compared to alternative 
theories and to experiment, with particular reference to poly(methyl methacrylate) and 
poly(ethylene terephthalal~e). 

1. A model for rubber-like deformation 
We now employ the general approach established 
in Part 1 [1] as the foundation for a more detailed 
deformation model. The chief objective in doing 
so will be to examine the utility of the basic two- 
component philosophy set out above. To that end, 
it is important to keep the model as general and 
simple as possible at this stage. A central aim in 
taking this unconventional approach is to resolve 
difficulties encountered by conventional models in 
dealing with some aspects of  s t ress-or ientat ion-  
strain behaviour. Of course, success in areas of 
difficulty is not in itself sufficient justification for 
a new strategy: the strategy has also to offer at 
least as satisfactory a description of  standard 
rubber-like behaviour as do established approaches. 

The orientational deformation mode is con- 
ceptually the easier to deal with. We neglect, 
initially, the effect of  specific interactions between 
chain segments, and develop an energy argument 
in terms of  the work done by an applied stress as a 
consequence of  "orientational" deformation. 

1.1. The orientational mode: a first 
approximation 

Consider a solid cylindrical body of  height H and 

cross-sectional area A, containing "orienting units" 
such as that in Fig. 1. Let a compressive stress a 
act radially on the curved surface, but not on the 
ends. The deviatoric component of  such a stress 
is the same as for uniaxial tension: since we may 
assume that deformation (at constant volume) is 
dependent only on the deviatoric and not on the 
hydrostatic component of the stress tensor, we 
can take the deformation behaviour to be 
equivalent to that of uniaxial tension. 

If we allow an orienting unit to undergo a small 
rotation d~ about its centre (Fig. 2), the stress 
does work given by: 

force x distance through which force acts 

= (force on a "slice" of  height 2l cos q~) x dR 

= o2nR 2lcos ~b x dR 

(neglecting the possibility of  the section inter- 
secting either end of  the unit - which implies, 
in effect, very long units). Consideration of  a 
cross-section through the body (Fig. 3) shows that 
the unit at angle ~b, together with its share of  the 
unoccupied volume, contributes an area 

A~ = ~a~l(~ cos 4) (1) 
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Figure 1 Cylindrical assemblage of "orienting units". 

to tile cross-section, where a, the packing density, 
is less than 1 and assumed constant. The change 
in area dA due to the small rotation is therefore 

dA = (naZ/~) sec 4~ tan r d~ (2) 
But 

d A  = 2 n R d R  
SO 

work done = av tan 4~ dq5 

where v, the volume per unit, is simply 27ra2Uc~. 
Thus the total work done in rotating from ~ = qh 
to q~ = 0 is given by 

t" 
W = av  j tan ~bd~b limits 0, ~bl 

= -- ov  log cos~bt (3) 

We can therefore assign an energy U = Uo + W to 
a unit at angle q5 (where Uo is energy associated 
with a unit at q~ = 0). 

Having now a relationship between q5 and 
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Figure 2 Detail  o f  o n e  " o r i e n t i n g  u n i t " ,  de f in ing  t e r m s  

used  in the  tex t .  

stress 

Figure 3 Cross-section or "sampling phne" through the 
assemblage. 

energy, the next step is to determine the equilib- 
rium orientational distribution of units in a stress 
field a at a temperature T. 

The solid angle at q~ to some axis is proportional 
to sin~b or, using the language of energy states, 
there are more states available at high ~b, i.e. 

Degeneracy D(~b) ~ sin ~b 

Under stress the simplest assumption we can make 
is of  a "Boltzmann" form, so that the probability 
of a unit being at an angle in the range q~ to q~ + d4~ 
is given by: 

p(~)dq5 ~ D(q~) exp (-- U/kT)ddp (4) 

This probability distribution corresponds to the 
distribution function in ~b, from which the usual 
spherical harmonics may be derived. However, 
if we were to cut a section horizontally through 
the assemblage, the probability p'((b) of  actually 
finding (cutting through) such a unit would be 
different. We would be less likely to find one at 
high ~b (near n/2)  because the component of  its 
length perpendicular to our cutting plane is pro- 
portional to cos ~b. Hence 

p'(~)) dq5 ~ sin q~ cos q~ exp (-- U / k T )  dq5 (5) 

However, 

exp (-- U / k T )  = exp (-- Uo/kT)  exp (qlog cos~) 

= exp (-- Uo/kT)(cos  q 4) 
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introducing the dimensionless variable 

q = o v / k T  (6) 
Hence 

p'($) d4~ = constant x sin r cos 4~ cosq$ dq~ 

(7) 

The total cross-sectional area of our body will be 

N ~ A~p'(~)dq~ 

A -- (limits 0, rr/2) (8) 

p'(~b)d~b 

(where N -  number of units cutting cross-section, 
and Aq~ = area of intercept associated with a unit 
at angle ~b, as defined by Equation 1. Equation 8 
can be written as: 

fsec @cos $cosqq~d(cos 4~) 
N1ra 2 

A - 

a f cos ~bcosq~b d(cos ~b ) 

NTra 2 (q + 2) 
- x (9) 

a ( q +  1) 

At zero stress (q =0) ,  let A =Ao, H = H o ,  and 
N = No. Clearly 

Ao = 2Nona2/o~ (10) 

so the extension ratio X is given (assuming con- 
stant volume, i.e., constant a) by: 

= H/Ho = Ao/A 

2 9  ( q + l )  = • (q + 2--------) (11) 

where the orientational component ko of the 
extension ratio is simply 

ko = 2(q + 1)/(q + 2) 

If the orientational process were the sole defor- 
mation mode, N would be constant (N = No) and 
the maximum strain 100% (k = 2). The corre- 
sponding plot of q against ~.o is shown in Fig. 4; 
this is effectively a true stress-extension ratio 
curve since for constant temperature q o:a. 
Relationships between stress and orientation also 
follow from this development: they are considered 
below. 
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Figure 4 True stress parameter q against orientational 
component of extension ratio k o. 

plane will vary as (1/cos~), which clearly 
approaches infinity as ~b approaches Ir/2. For a 
finite-length cylindrical unit this intercept area 
should tend instead to some finite value at 
q~ =7r/2. The shorter the unit, the lower the 
angle ~ at which the ends begin to matter - and 
for a real material a reasonable "unit" may be so 
short and squat that the "long cylinder" assump- 
tion (l >> a) must be rejected. 

Short fat cylinders are not particularly pleasant 
to deal with, because their surfaces are not 
mathematically smooth and continuous. A more 
easily handled - and conceptually nicer - shape 
is provided by a prolate ellipsoid of revolution 
(a rugby ball!). The geometry of such a shape is 
a little tedious, so it is in Appendix I, where an 
argument similar to the above leads to: 

Ao No 
- -  • 

A N 

2 1 f secq+2~od6 

m 2 l + e  m f  

02) 
(with limits of integration 0, arc c o s  (ml/2). Here e 
is the eccentricity of the ellipsoid and, to simplify 
the algebra, m 2= (1 --e2): the "aspect ratio" of 
the ellipsoid is simply 1/m. 

According to Equation 12, Ao/A (i.e. ko) 
varies with q as shown in Fig. 5. The maximum 
orientational strain is clearly zero if the aspect 
ratio of the ellipsoid is 1 (a sphere) and approaches 
100%, corresponding to our simpler argument 
above, as the aspect ratio tends to infinity (Fig. 6). 

1.2. More realistic units 
The argument above is valid so long as we forget 
that cylinders have ends. We have assumed that 
the "intercept area" of a unit with the sampling 

1.3. The extensional component: 
a simple calculation 

The argument above would hold for any liquid 
composed of molecules of anisotropic shape. 
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Figure 5 True stress parameter  q against k o for ellipsoidal 
units  (number  denotes  ellipsoid aspect ratio). 

However, the ability of the molecules to flow past 
one another and the overall dimensional changes 
thus possible would completely swamp the strain 
associated with their orientation induced by the 
stress field (although the orientation itself would 
be manifest as flow birefringence). In envisaging 
orienting units which are more-or-less flexibly 
joined into chains, as in a polymer, the "flow" 
- the extensional component of deformation - is 
limited. We are not considering here the possibility 
of changes in the relative positions of the centres 
of gravity of the complete macromolecules, as 
might occur during the viscous flow of a melt. 

To model the non-orientational mode of 
deformation we allow the units to slide past one 
another so as to reduce the average number inter- 
cepting a cross-section through the cylindrical 
assemblage. A similar argument to that of the 
orientational mode can be employed, in terms of 
the work done by an applied stress. 

As a first approximation, suppose we build up 
the assemblage unit by unit. Let there be two 
ways (neglecting orientational states) in which 
each successive unit may be added, as indicated 
in Fig. 7: either: 

(a) alongside its predecessor, in the same 
"layer"; or 

(b) in an adjacent " layer" to~ but above, its 
predecessor. 
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0 

aspect ratio 10 

Figure 6 Maximum rotational strain ko max as a funct ion of  
unit  aspect ratio. 
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Figure 7 Extensional deformat ion mode.  Unit 2 may be 
added to the  assemblage in one of  two ways with respect 
to unit  1 : (a) "alongside" (b) in a different "layer".  

Suppose that the probabilities of these con- 
ditions are Pa and Pb respectively. In the absence 
of stress, let (Pa/Pb)= (Pa/Pb)o, and the number 
of units intersecting an average cross-section be No. 

If we now impose an applied stress then, 
neglecting rotation, the new number N inter- 
secting such a cross-section will be given by 

N (PalPb) 
- ( 1 3 )  

No (Pa/Pb )o 

If one unit changes from state (a) to state (b) we 
will have an average macroscopic dimensional 
change in the' body, such that the applied stress a 
will do work (Fig. 8 )  

W = va = q k T  (14) 

where as above, v is the volume per mobile unit. 
Again the simplest assumption we can make is of 
a "Boltzmann" form, so that we write: 

PD 1 exp (W/kT)  = 1 
Pa - K "~ exp ( q )  

/I 
Ao 

i + 
t 

mean number of mean number of 
intercepts N O intercepts N 

(minimum N ~ ) 

Figure 8 Work associated with dimensional change due to 
extensional deformation.  



or 
(ealeb) 

- exp (-- q) (15) 
(Pa/Pb)o 

If all units had this choice between states, we 
should now obtain 

(N/No) "" exp (-- q) (16) 

However, such a model would not be very appro- 
priate to a real solid, in which molecular segments 
are subject to constraints on their freedom of 
movement due to their neighbours - c h e m i c a l  
cross-links, mechanical entanglements, steric 
hindrance, and particularly in a polymer the 
effect of  neighbouring portions of  the same main 
chain. 

To model this constraint in detail would be 
most difficult, and numerous workers have given 
attention to the problem. We therefore introduce 
a simplification. A mobile unit will, "on average", 
fall somewhere between the two extremes of  com- 
plete freedom of extensional movement on the 
one hand, and complete restraint of  extensional 
motion on the other. Let the mean constraint 
on extensional deformation be 1/K, so that 
0 < 1/K< 1 (it is a computational convenience 
to use the reciprocal, since we then deal with a 
parameter greater than 1). We now replace the 
"distribution of fractional constraint", with mean 
value 1/K, by dividing the No units cutting a 
typical plane through the assemblage into two 
categories. Let one set, containing N* units, 
be completely constrained, and the remaining 
(No--N*) units be fully free to undergo exten- 
sional deformation, with 

N*/No = 1/K 

In  this simplified picture, the first set will be 
confined in effect to state (a) i.e., unable to leave 
the selected cross-section. Fig. 9 depicts the 
situation in terms of the three-dimensional chain: 
we visualize the chain segment shown as being 
"pulled" in a direction normal to the sampling 
plane so that the number of  "intersections" is 
reduced to a minimum of one. Equation 16 can 
now be modified to give 

N = ( N o - - N * ) e x p ( - - q ) + N *  (17) 

which after a little rearrangement produces 

(N/No) = ( I /K)  + (1 -- 1/K) exp ( - -q)  (18) 

with 
K = No/N* (19) 

T 

> 

Figure 9 A schematic representation of extensional defor- 
mation. The number of intercepts with the sampling plane 
is reduced to a lower limit (here 1) as the chain segment is 
"pulled" normal to the plane. 

The extensional component Xe of the extension 
ratio is then the reciprocal of this expression, 
(No/N). The relationship is shown graphically in 
Fig. 10 for the case K = 3. 

Physically, the "average constraint" 1/K 
represents the resultant effect on extensional 
deformation of linkages between units along the 
polymer chain, chemical cross-linking, mechanical 
entanglements and steric hindrances. 

1.4. A refinement of the extensional 
deformation component 

Consider again the two states (a), (b). Treating 
these as energy states, let the number of  available 
sites in these states at zero stress be in a ratio M. 
Since at zero stress we can take the energies of  
the two states to be equal, their occupancies, 
denoted n ~ n ~ will be in the same ratio M. At a 
finite stress, state (b), "absent from the sampling 
plane", will be favoured, and again assuming 

10 
No  -i=3 

q 

0 
1 ke 3 

Figure 10 True stress parameter q against translational 
component of extension ratio X e for the case K = 3"(ile., 
1/3 of the intercepts on each cross-section are fixed and 
cannot be expelled by stress). 
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Boltzmann statistics we write 

nl/n2 = M exp ( -  q) (20) 

where nl,  n2 are the occupancies at finite stress. 
There are ( N o - N * )  units per sampling plane 
which are able to distribute themselves between 
these states, so that 

n o = No--N* (21) 

and therefore 
No - -N* 

= M ( 2 2 )  
n o 

Similarly, at finite stress, 

nl = N - - N *  (23) 

But since the total number of units (nx + n2) in 
our hypothetical system must be constant, 

No- -N* + n o = N - N *  + n2 (24) 

Using Equation 22 we then have 

n2 = ( N o - - N * ) - - ( N - - N * )  + (No--N*)/M 

= No(1 + 1]M)- -N- -N*/M.  (25) 

Substituting for na and n2 in Equation 20, 

(N - -U*)  = (MUo + No -- MN - -U*)  exp (-- q) 

(26) 
and rearranging, 

N[1 + M exp ( -  q)] 

= N0(1 + M )  exp (--q)  +N*[1  --exp (--q)] 

No 
N 

I + M e x p  ( - -q)  

(1 + M)exp (- -q)  + (N*/No)[1 --exp (--q)] 

(27) 

which is our expression for the extensional com- 
ponent Xe of the extension ratio. 

It will presumably be reasonable to use a model 
where there are more available sites "absent from" 
the sampling plane than "present", so that M will 
be less than 1. The case M "  0 (very many more 
"absent" states) is equivalent to the simpler 
argument above. The two cases M = 0, M = 1 are 
plotted in Fig. 11: given that a reasonable choice 
for M would be small, it is clear that the more 
rigorous model makes in practice only a slight 
difference to the stress-strain relationship, at 
least in tension. It will be convenient for most 
purposes, therefore, to take M =  0 and use the 
simpler model. 
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Figure 11 Effect of modified expression for h e. Solid line: 
M = 0 (as previous figure); dashed line: M = 1. 

1.5. Resultant st ress-stra in behaviour 
We have now derived expressions for each of the 
two components of strain, the orientational and 
the extensional. The overall extension ratio X will 
be given by the product 

X(q) = XoXe (28) 

with the explicit equations for ko and ~e given by 
Equations 12 and 27. Since it is conventional to 
represent stress-strain behaviour in terms of 
either "nominal" or "true" parameters, we make 
use of the following relationships: 

Nominal strain en = X -- 1 

True strain e t = in (1 + %) = Ink  

Nominal stress o n = o/k 

and hence define a "nominal stress parameter" 
Q such that 

Q = q/~. 

1.6. Calculat ion of or ientat ion parameters 
Values of the spherical harmonic parameters (P2n) 
may be calculated in an analogous way to the 
calculation of Xo. They will vary only with the 
orientational component of the deformation, 
since (cos2nr is a function of Xo but not of Xe. 
The shape of the plot will of course change with 
Xe if the orientation parameter is plotted against 
some ,parameter other than the  "true stress par- 
ameter" q, since Xe does affect the transformation 
from q to other measures of stress or strain. From 
Equation 4 the probability of a "unit" lying 
between r and ~b + d~b is 

p(r ~ D(q~) exp (-- U/kT)ddp 

constant x sin r 



Average values of cos2n~b will then be given by 

(cos2"r = 

f o/2Cos2n (~p(c~ ) ddp 

fo/2p(~b)dq~ 

For n = 1 we obtain 

(29) 

(cos:~) = 

and similarly for general n, 

f2 cosq+ 2q~d( cos 4) 

] c~176 q~) 

q + l  

q + 3  

(30) 

(31) 

(cos2nq~) _ q + 1 (32) 
q + 2 n + l  

From the definitions of P2n(COS ~b) we then obtain 

(P2(c~ = 1 (  3q+l-1)q+3 (33) 

(Pa (cosq~) )  = 5 - - - - 3 0  + 3  etc. 
q + 5  q + 3  

(34) 

The calculation of P2n values can be extended to 
our ellipsoidal units by a similar method to that 
employed for Xo: the detailed calculation is given 
in Appendix I. 

2. Behaviour of the model 
With the derivation of the (P2n) terms in the 
orientation distribution function, we now have 
the necessary equations to describe the stress- 
orientation-strain relationship for the system. In 
the limiting case of infinite aspect ratio (Equation 
11) the stress-strain curve is described by: 

k(q) = 2 (q + 1) 1 
(q + 2) x [1/K + (1 -- l/K) exp (--q)] 

(35) 

True stress (at) is proportional to q (Equation 6), 
while nominal stress (an) is just aJX. As will be 
illustrated below, the introduction of finite aspect 
ratios does not greatly affect the overall shape of 
the curve. 

The orientation-true stress relationship, given 
for infinite aspect ratio by Equations 33, 34, etc., 
is independent of the constraint parameter K, 
though the latter does affect the orientation- 

nominal stress and orientation-strain plots. Such 
curves are easily determined numerically, but 
cannot be represented simply by an analytical 
expression since Equation 35 is transcendental. 

To plot typical stress-orientation-strain 
relationships we now need to select appropriate 
values for the unit aspect ratio and the constraint 
parameter K, i.e. the ratio No/N*. The selection is 
best made in the light of information obtainable 
from experiment or from molecular considerations. 

The first item of information of which we can 
make use is the maximum strain of the system. 
The model will predict a maximum extension ratio 
given by ~ax K ,  where the maximum orientational 
component X~ nax will be 2 for the "first approxi- 
mation" model and somewhat less, as calculated 
in Appendix I, for units with a finite aspect ratio. 
Now if we consider typical nominal stress-strain 
curves for real polymers in the rubbery state, and 
extrapolate the high-strain portion roughly, the 
plot will tend towards a limiting extension ratio 
of typically 6 to 9 for natural rubber, and rather 
less for other polymers. If the model is satisfactory 
at low to moderate strains we might expect the 
curve to turn up towards an asymptote rather 
more abruptly, and at a rather lower strain, than 
experiment indicates. This is because the model 
as it stands makes no allowance for the "pulling- 
out" of entanglements, possible chain scission, and 
other effects which may be associated with high 
strains and hence very high stresses. In addition, 
our assumption of a fixed unit aspect ratio, and 
our use of the constraint concept as something 
which can be expressed as a fixed fraction of totally 
constrained units, means that we have nothing 
strictly analogous to the effect of a distribution of 
chain contour lengths. It is that distribution which 
has been associated with the failure of conventional 
models to deal adequately with the high strain end 
of the stress-strain curves of rubbers. Chains of 
low contour length would tend to reach maximum 
extensibility earlier than those of higher contour 
length, and this would make the high-strain 
phenomena appear less abruptly than for a set of 
chains of uniform length: similarly in the two- 
mode model we may expect effects at high strain 
to come into play more sharply than would be 
seen in a real polymer. In the light of the fore- 
going, it would be most sensible to choose our 
parameters such that the predicted maximum 
strain is similar to, or perhaps rather less than, 
the limiting strain which we should expect by 
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extrapolation o f  real nominal stress-strain 
c u r v e s .  

The second item of information which would 
be of  value concerns the aspect ratio of  the 
"orienting unit". We consider the problem in 
more detail below, but for our present purposes 
a rough idea will do. The statistical random link 
of  conventional rubber elasticity might be a lower 
bound on the unit size. It would typically corre- 
spond to several monomer units, though exact 
sizes are uncertain: this might suggest a fairly 
slender ellipsoida! unit~ thoug h the inclusion of 
free volume around the chain would reduce the 
aspect ratio. Fbr some polymers a certain amount 
of c0nformational information is available: for 
example, a consideration of the structure of 
PMMA using WAXS [2, 3] indicates that the under- 
lying conformation (near all-trans) is typically 
preserved over about 16 -20  backbone bonds o r  
8 - 1 0  repeat units*. While we can make use of 
conformational information in assessing the two- 
mode model, it is important to note that the 
model does not rest upon any detailed confor- 
mational assumptions. 

These considerations alone will not allow 
detailed specification of the unit size and aspect 
ratio for a given polymer, but they nevertheless 
offer some general guidance and underline the im- 
portance of  comparing any proposed unit with the 
nmcromolecular chain. We select an aspect ratio 
of  3 as perhaps "typical". The choice is still rather 
arbitrary, but the model is relatively insensitive 
to the parameter with respect to the shape of  the 
stress-strain and orientation-strain curves; the 
orientational behaviour to be considered below 
will provide more concrete information. 

To obtain a reasonable maximum strain we 
have to select K. A value of  3 for K would give a 
maximum extension ratio of 6 with units of 
infinite aspect ratio (needles) and rather less with 
more realistic units. This means, if we think back 
to the original discussion of the constraint con- 
cept, that we are assuming 33% constraint, on 
average, on an orienting unit. It would be unwise 
to try and justify the 33% with precision on the 
basis of  cross-linking, inter-unit bond and steric 
hindrance, but a figure of a few tens of per cent is, 
at least, plausible, and consistent with exper- 
imental estimates of maximum extension ratio. 

Q 
(=v1~) 

ASPECT _ 7 - ~  

k 

Figure 12 Effect of unit aspect ratio on the nominal 
stress-strain curve (K= 3). k = extension ratio, Q is 
proportional to nominal stress. Number denotes aspect 
ratio. 

Fig. 12 shows the predicted stress-strain curve 
for K = 3 and aspect ratios ranging from 2, a squat 
ellipsoid, to infinity, the limiting case of  "long 
thin needles" described by Equation 35. The 
overall shape of  the curve, particularly for the 
finite aspect ratios, is typical of those observed 
for polymers in the rubbery regime. Fig. 13 shows 
a similar set of  curves, this time with a fixed aspect 
ratio of  3 and K varying around the value of 3 
suggested above. Finally, the model prediction 
with a parameter values suggested is compared to 
the Gaussian theory in Fig. 14. 

2.1. Orientation development 
The orientation-stress behaviour predicted by 
the model is shown in Fig. 15 (for the first two 
Legendre polynomials), again for a range of unit 
aspect ratio: these curves are independent of K. 

The strain-optical coefficient (SNOC) is given 

vN--~ 2.5/ 3/ 4 

o 
k 

Figure 13 Effect of constraint parameter K (=No/N*) on 
the nominal stress-strain curve. 

*This length is actually deduced from data for syndiotactic PMMA, but we can apply it here since the scattering data 
for atactic (80% raeemic dyads) and syndiotactic forms are "virtually indistinguishable". 
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Figure 14 Comparison of model with Gaussian theory for 
uniaxial tension and compression. (A) two-mode model 
(aspect ratio 3, K = 3); (B) Gaussian (NkT = 0.39 MPa); 
(C) Gaussian (NkT = 0.273 MPa). The Gaussian plots are 
scaled by putting T = 20 ~ C and assuming v = 3.0 nm 3. 
Each unit of Q would then represent 1.35 MPa. 
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Figure 15 Variation with true stress parameter q of the 
first two even order spherical harmonics. Solid lines 
(P2(cos0)); dashed lines <P4(cos0)L Number denotes 
aspect ratio. 
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Figure 16 Effect of aspect ratio on orientation-strain 
plots, for the case K = 3. Solid lines: (P~(cos 0)), dashed 
lines: (P4 (cos 0)). Number denotes aspect ratio. 

by the product  of initial modulus and SSOC. 
Fig. 16 depicts the behaviour of the first three 

spherical harmonics as functions of  X for the 
parameters chosen earlier. The most prominent  
difference from conventional models is that (P4) 
and (P6) become negative at low strains: the 
maximum negative (P4) increases with aspect 

ratio, but  the "cross-over" is at a fixed value 
of  q (q = 2). This may help to explain negative 

(P4) values reported in the literature [4 -6 ] .  

2.2. Energy band representation 
The "energy states" argument, used above in 
developing an expression for the extensional mode 
of  deformation,  can be extended to provide a 
means of visualizing the model in terms common 
to several aspects of  materials science. An analogy 
may be drawn with a system in which a set of  
particles is distributed over the following energy 
states, as depicted in Fig. 17: 

(i) a state of  fixed energy (arbitrarily taken as 
zero energy) representing "units absent from the 
sampling plane";  

(ii) a "band"  of energy states, representing 
"units present in the sampling plane",  with 
energies dependent on 0 and on stress. 

At zero stress (q = 0) the energy band will 
collapse to a delta function at the arbitrary zero 
of  energy, and the distribution over the states will 
depend only on the available sites, since all states 
will have the same energy. At finite q, the band 
will begin at energy qkT (because from Equation 
14, with q ' = q ,  this is the energy difference 
between a unit absent from the plane and one 
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Figure 17 Energy band representation of a sampling plane 
in the two-mode model (aspect ratio 3, K = 3) for the 
case q = 2. A higher stress would shift the band to higher 
energies: the case q = 5 is shown dashed. 

present but with ~b = 0) and will extend to an 
energy corresponding to a unit at ~ = n/2. For 
the "first approximation" model this latter energy 
will be infinite, because the intercept area between 
a unit of infinite aspect ratio and the sampling 
plane tends to infinity as 4) approaches 7r/2. From 
Equation 3, the energy will vary as ( - l o g  cos ~b). 
For units of  finite aspect ratio, the energy will 
vary as [--log(1--e2sin2~b)] (cf. Appendix I), 
where e denotes the eccentricity of the unit. The 
limit as q~ approaches rr/2 is hence now finite. The 
effect of increasing stress is then to widen the gap 
between the "zero energy state" and the band, 
but to widen the band itself. For a given stress 
at a particular temperature, the cross-sectional 
area of  the assemblage, and thus the strain, will 
be determined by the occupancy of  the states. 
If  there were no limit on the number o f  units 
which could be "absent" from a section at any 
finite stress, they would all be absent and the 
distribution would collapse at the zero of  energy. 
Constraint effectively limits the occupation of  
the zero energy states to a finite fraction of  the 
number of units available. 

3. The model in comparison with 
experiment 

We now re-examine some of the available exper- 
imental data in the light of the two-component 
model. It is beyond the scope of  this series of 

*Or at least, the disposition of something: probably the 
crystalline systems is the nature of the "something". 
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papers to apply the nodel to all aspects of  non- 
crystalline polymer deformation, but a more 
restricted examination will serve to clarify the 
scope and limitations of  the two-mode approach. 

In doing this it is appropriate to give rather 
more weight to orientational than to mechanical 
behaviour: orientation is arguably less difficult 
to "deconvolute" from factors of  experimental 
geometry, technique and temperature, particularly 
as a variety of  experimental techniques are applic- 
able to orientation measurement and can be 
correlated with one another. Moreover, orientation 
is rather more informative about the local dis- 
position of  molecular segments*: especially so if 
the investigation is extended to spherical harmonics 
of order higher than (P2(cos q~)>. 

Before proceeding further one should recall the 
formidable potency of  adjustable parameters, and 
it is salutary to attach progressively less significance 
to a model as more such parameters are introduced. 

For the model developed above, there are two 
parameters affecting~the shape of  the stress-strain 
plot: the unit aspect ratio, connected with the 
orientational mode, and the "constraint par- 
ameter" K, related to the extensional deformation 
mode, with the "average fractional constraint" on 
a unit equal to 1/K. Both allow a simple first- 
approximation estimate to be made: molecular 
considerations such as chain stiffness may suggest 
a reasonable estimate for aspect ratio, while the 
maximum extension ratio - roughly estimable by 
extrapolation of  a stress-strain curve - is con- 
trolled by both aspect ratio and K. The scaling 
factor v merely affects the conversion from the 
dimensionless units of  q or Q to those of stress. 

Though the characteristic shape of the stress- 
strain curve is probably the best known feature of 
rubbery behaviour, the strong sensitivity of the 
inflexion point to experimental conditions, e.g. via 
stress-softening, militates against its use as a 
characteristic of the deformation. The initial 
(static) modulus - in the uniaxial geometry, 
Young's modulus - is often used to characterize 
the mechanical behaviour of a material. In the 
Gaussian model it is given by 3NkT (in the usual 
notation); though the well-known "front factor" 
problem involves debate concerning whether the 
numerical factor of 3 is correct. The two-mode 
model predicts that the initial slope Dqo of  the 

most intractable question in orientation studies of non- 



Q against X plot will be affected by both of the 
adjustable parameters: it wilt be raised by 
decreasing the unit aspect ratio, or by increasing 
the mean constraint on extensional deformation 
(in fact Dqo increases approximately linearly 
with l /K)  

The parameters involved in any model designed 
to describe polymer behaviour should be related, if 
possible, to the real macromolecular chain. To this 
we consider several specific polymers, and start by 
considering the initial gradients of the stress- 
strain, orientation-stress and orientation-strain 
curves, since these afford preliminary estimates 
of the model parameters. 

3.1. Initial behaviour: estimating the unit  
volume and aspect ratio 

The volume v associated with a repeat unit may be 
calculated from density p and repeat unit mass 
Mru, in atomic mass units, using the following 
formula, (where N a = 6.02 x 1026): 

Mr. 
v = - -  (36) 

pNa 

In the two-mode model, given the values of the 
two adjustable parameters, the volume per unit 
may be predicted - with the reservations outlined 
above - from the initial slope of a plot either of 
Q against X or of (P2) against q. The starting slope 
of the q-X and Q-X plots are of course identical. 
Thus for the Q against X plot: 

v = kT(Dqo/Go) (37) 

where Dqo is the dimensionless slope (dq/dX) 
calculated from the model and Go is the modulus 
determined experimentally, in units of stress 
(in this nomenclature, Go is the uniaxial modulus, 
corresponding to the 3 N k T  of the elementary 
Gaussian theory; some authors denote the "rubber 
modulus" N k T  by G). This provides a simple 
technique for estimating v on the basis of the 
model: we take an experimental curve, set aspect 
ratio and K such that the maximum strain, 
modulus ratio and inflexion strain approximately 
match those determined from experiment, and 
then determine v according to Equation 37. 

Alternatively, the initial slope of the (P2)-stress 
plot (denoted SQOC) is related to the conventional 
stress-optical coefficient (SSOC) via v: 

k T  SSOC 
v - (38 )  

/',/.to SQOC 

where Apo is the intrinsic (maximum orientational) 
birefringence. 

The second method differs from the first in 
that the SQOC should be independent of the 
extensional mode and hence of K. Data for SSOC 
are rarely directly available: they are generally 
obtained under load, so that birefringence will be 
composed of both stress-related and orientation- 
related contributions. Ideally, one would work 

with data obtained by a quench-unload procedure: 
even then, however, there is a risk of quenching in 
some stress birefrigence, particularly in view of 
the sharp rise in stress on quenching through the 
glass transition in anything but a perfectly "soft" 
testing apparatus. Stress-optical data can frequently 
be obtained only by combining strain-optical 
coefficient (SNOC) and initial modulus measure- 
ments from different samples or even different 
investigations, thus introducing a possible source 
of error. 

Combination of Equations 37 and 38 leads to 
an expression for the strain-optical coefficient 
(SNOC), which is independent of v : 

d(P2) SNOC GoSSOC 
dX - Ago ApO Dq~ 

(39) 

We will abbreviate d(P2)/dX to SNOCP. It is con- 
venient to plot the reciprocal initial slope of the 
stress-strain curve, l/Oqo , against SQOC, since 
a fixed value of strain-optical coefficient will 
correspond to a straight line through the origin 
on such a plot. 

This gives us a procedure (Fig. 18) for fitting 
values of the model parameters to the initial 
strain-optical behaviour of a real material. We 
first draw the staight line referred to above, of 
gradient equal to SNOCP. This cuts through the 
set of curves corresponding to particular values of 
K and if we have estimated "plausible limits" on 
K, we may determine the corresponding limiting 
pairs of values of (Dqo, SQOC). The SQOC is 
dependent only on the unit aspect ratio, so that 
the corresponding range of possible aspect ratios 
may also be determined. The aspect ratio tells us 
the maximum orientational strain X~ ax and hence, 
multiplying X~ nax by K, the maximum overall 
extension ration •max. Reference to a stress-strain 
curve will indicate what Xrnax is reasonable, and 
we can then select a reasonable pair of values of 
aspect ratio and constraint parameter within our 
possible range (we could alternatively use some 
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Figure 18 Interpretation of strain-optical 
coefficient SNOCP = d<P2)/dh. Assume 
plausible values of K to lie in the range 3 
to 7. (a) Determine SQOC for limiting 
values of K; (b) determine aspect ratio 
from SQOC; (c) determine Xo max from 
aspect ratio (use of reciprocal aspect 
ratio reduces plot curvature). Maximum 
strains (xomaxK): 1.50 X 3 = 4.50, 
1.63 X 7 = 11.41. 

other characteristic property instaed of  )kma x to 
see which values within the range appear most 
appropriate). 

The procedure is illustrated by Fig. 18 for a 
hypothetical example where SNOCP = 0.15, with 

K required to be in the range 3 to 7. From Fig. 18a 
the line cuts the K = 3, K = 7 curves at SQOC = 
0.109, 0.145, resepctively. These values Corre- 
spond (Fig. 18b) to aspect ratios 2.18, 2.86; to 
X~ n ~  of  1.50, 1.63; and to overall maximum 
extension ratios of  4.49 and 11.44 respectively. 
The use of  the )t~ a~ against reciprocal aspect 
ratio diagram (Fig. 18c) provides a nearly linear 
plot which is convenient to use. SNOCP values will 
typically be taken from tangents on published 
diagrams, so that deductions from them should be 
regarded as approximate. 

With this type of  analysis of  initial orientation- 
strain behaviour as a starting point, we can go on 

to consider some individual polymers which, given 
suitable regimes of  temperature and experimental 
time-scale, exhibit rubber-like behaviour. It is 
appropriate to concentrate on materials in which 
orientation has been studied using a variety of 
techniques, allowing (P2(cosq~)) to be monitored 
without relying entirely on rather uncertain esti- 
mates of  such quantities as intrinsic birefringence. 

3.2. Poly(ethylene terephthalate) 
The commercial use ofpoly(ethylene terephthalate) 
(PET) as oriented film and fibre provides a stimu- 
lus for the study of  its mechanical and often- 
tational changes during deformation. Several 
techniques have been applied to the investigation 
of  orientation-strain relationships, including a 
useful body of  data obtained at Leeds University, 
UK, on material of  near-zero crystallinity drawn 
at 80~ [7-11].  Quoted values for SNOCP from 
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Figure 19 PET orientation data compared to affine and 
two-mode (aspect ratio 3) predictions. All data refer to a 
draw temperature of 80 ~ C. 

these data include: 

Cunningham etal .  [7] (i.r. spectroscopy 
bire fringence) 0.107 

Nobbs et  al. [8] (polarized fluorescence) 0.072 

Purvis and Bower [ 10] 0aser-Raman 
spectroscopy) 0.17 

Rietsch etal .  [ 11 ] (birefringence) 0.072 

The result of  Rietsch et  al. assumes an intrinsic 
birefringence of 0 .235  [12]. While their result 
agrees with that of  Nobbs et  al., Rietsch et  al. 

plot birefringence data obtained by other workers 
and show that most strain-optical coefficients 
would be somewhat higher - giving SNOCPs up to 
perhaps 0.35. 

A plot of the available data (Fig. 19) indicates 
that a representative figure for SNOCP would be 
nearer to the 0.17 of Purvis and Bower [10], 
judging from the "steady" slope of the plot over 
the first 200% or so of strain. In making this 
assessment we leave aside data which, though 
from supposedly non-crystalline material, displays 
even above Tg the pseudo-affine orientation 
behaviour typical of  crystallites: such data is 
examined elsewhere [13]. The value 0.17 lead to: 

at K = 3: SQOC = 0.128, aspect ratio 2.51 
X~ ax = 1.572, ~ k m a  x = 4.72 

a t K  = 7: SQOC = 0.172, aspect ratio 3.56, 
Xp ax=  1.725, Xmax = 12.07 

An intermediate case of  aspect ratio 3 requires 
K --~ 4.25 for this SNOCP and leads to Xmax ~ 7.0. 

In view of the uncertainty over the initial slope, 
it is worth trying to improve the fit by looking at 
the full (P~>-strain curve, and reducing K to 3 
gives the fit shown by the solid line in Fig. 19. 
It is fortuitous that this approximate fit (aspect 
ratio 3, K = 3) coincides with the parameter values 
suggested above: obviously there is room for 
refinement, but the scatter in the orientation- 
strain data and the absence of corresponding 
stress-strain curves means that at tempts at greater 
precision is not really justified. 

At high strains, data points tend to lie on the 
high-strain side of the model prediction, and this 
may indicate that the best choice of parameters 
will change with increasing strain; which is what 
we might have expected, bearing in mind the 
conformational changes which come into play 
[13]. Fig. 19 also shows, for comparison, the 
affine predictions for n = 10 and n = 25. Even 
with a value as low as n = 10, the curve still falls 
below most of the data; and n = 10 implies a 
limiting sttrain of only Xmax = 101/2~- 3.16:under 
affine deformation. Furthermore, Cunningham 
et  al. [7] find evidence for the existence of a 
unique relationship between <P2> and the pro- 
portion of trans conformers: this correlation 
continues to hold beyond k = 101/2, which seems 
to indicate that there is no change in mechanism 
associated with the "affine limit". 

The nearest we can get to a stress-strain curve 
for the material considered above is the peak 
shrinkage stress again strain plot recorded by 
Rietsch et aL [11], reproduced in Fig. 20 (note 
that the abscissa is X 2 -  l/X). The apparent maxi- 
mum strain agrees well with the model prediction 
of Xma,, "~ 5, and the initial slope of the stress- 
strain curve can be matched to that of Rietsch 
et  al.'s plot by taking the volume per unit to be 
approximately 0 .929nm 3, equivalent to some 
3.8 repeat units. This is only slightly greater than 
the 2.9 repeat units per equivalent random link 
which Cunningham et al. [7] requil;e in order to 
fit low-strain <P2> data by an affine model. 

The parameters above, and this estimate of  v, 
allow one to draw an ellipsoid to represent to a 

2025 



1G 

I/I 

�9 -g- 5 L,. C" 
O1 

o 

~ det 

lo  _Vx 2o 

Figure 20 Nominal stress-strain curve from two-mode 
model (aspect ratio 3, K = 3) compared to shrinkage 
stress against strain plot for PET from Rietsch et al. [11 ]. 
The vertical scaling assumes v = 0.929 nm 3. 

first approximation the orienting unit  for PET. 
Fig. 21 shows such an ellipsoid in comparison to 
the PET chain, assuming a packing density of  
0.6 (i.e. volume of  the ellipsoid alone = 0.550 nm3). 

It should be emphasized that the ellipsoid will be 
an idealized representation of the " typical"  
orienting unit, and clearly, because of the nature 
of  the chain packing, it would be misleading to 
try and draw discrete units with clearly defined 
boundaries. Nevertheless, the case of  PET gives 
grounds for believing that the two-mode model 
offers a worthwhile approach to orientational 
deformation,  at least in the regime where rate 
effects may be neglected. 

3.3. Poly(methyl methacrylate) 
Poly(methyl methacrylate) (PMMA) is perhaps the 

best non-crystalline polymer for mechanical and 

Figure 21 Suggested idealised orienting unit for PET 
compared to a space-filling model of the molecular chain. 
Aspect ratio 3; volume of ellipsoid 0.550nm3; packing 
density 0.6. 
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Figure 22 Fitting the experimental stress strain curve for 
PMMA in uniaxial tension at 150 ~ C. Aspect ratio 1.46, 
K=4.5 .  Scaling: v=  3.150nm 3. Experimental curve is 
dotted, 

orientation studies. It is well-characterized, free 
from strain-induced crystallization, optically 
transparent, and fairly well-understood from a 
structural viewpoint [3]. 

At 150 ~ C, well above the glass transition of  
around 105 ~ C, it has an initial Young's modulus 
of approximately 1.6 MPa and an SNOCP of about 
0.067, without correction for irrecoverable flow 

(of order I0% of  the measured true strain at 
k ~--4) The latter leads to: 

at K = 3: SQOC = 0.046, aspect ratio 1.39, 
X~ nax = 1.22, Xmax = 3.66 

at K = 7: SQOC = 0.059, aspect ratio 1.53, 
k~ nax = 1.28, Xma~ = 8.98 

To obtain a maximum strain comparable to that 
indicated by experiment we take an intermediate 
case: aspect ratio 1.46, K = 4.5 gives km~,, ~- 5.6, 
which is in agreement with the stress-strain curve 
in Fig. 22. 

The same choice of parameters gives a satis- 
factory fit to the 150~ orientat ion-strain data 
up to strains of  250% to 300% ( k  = 3.5 to 4), as 
shown in Fig. 23. 

These data do not in themselves provide 
evidence for the predicted upturn in the (Pz)-  
strain plot  at still higher strains. The highest-strain 
point  may in fact be an indication of a departure 
from the predicted curve: a reason for this is 
suggested by recalling (cf. Part 1) that orientation 
is more susceptible to recovery than is overall 
strain. The 150~ deformation was performed 
rapidly (some tens of  seconds); but a further few 
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Figure 23 Predicted orientation-strain relationship com- 
pared to WAXS data (circles) for PMMA in uniaxial ten- 
sion at 150 ~ C. Solid line: aspect ratio 1.46, K =4.5. 
Dashed line: aspect ratio 1.5, K = 5.6. 

seconds elapsed while the specimen, under load, 
was cooled to below Tg (as judged by the sudden 
rise in load). It may well be during this initial 
cooling that any recovery of  orientation takes 
place, with the less easily recovered extensional 
mode making up for the loss of  orientational 
deformation. This too would be particularly 
significant at high stresses (and hence high strains), 
and might therefore explain the absence of  the 
expected upturn in the (P2)-strain plot above 
X~--4. 

A similar observation applies to the plane 
strain results of Pick and co-workers [6, 14, 15] 
where higher strains were achieved than in the 
uniaxial work. There is little evidence of  an upturn 
(the slight upturn in Pick's 150 ~ C curve is due to 
an isolated point at X -~ 7.5). One might expect 
the cooling problem to be more significant here: 
the nature of the plane strain geometry, with 
metal dies in contact with the specimen, means 
that cooling will be slower owing to the heat 
capacity of  the apparatus. The stress-strain curve 
in Fig. 22, obtained during loading, does of  course 
display the predicted upturn. 

The selection of aspect ratio 1.46 from the 
range allowed by the experimental SNOCP, though 
rather arbitrary, appears to fit the (P2)-strain 
behaviour reasonably successfully up to moderate 
strains. It is worth noting that a slightly different 
choice can be made to fit (P2) up to higher strains: 
Fig. 23 also gives the case of  aspect ratio 1.5, 
which for the same SNOCP requires K = 5.6. The 
corresponding stress-strain curve, however, 

. J  

Figure 24 Suggested idealized orienting unit for PMMA 
compared to a space-filling model of the molecular chain. 
Aspect ratio 1.46; volume of ellipsoid 1.890 nm3; packing 
density 0.6. The photograph was taken normal to the 
ester sidegroups. 

exhibits too pronounced an inflexion to allow as 
close a fit to its experimental counterpart as the 
earlier pair of parameters: which further under- 
lines the importance of  giving attention to both 
orientational and stress-strain behaviour in 
assessing a model. 

As in the case of  PET we can now arrive at 
some specific information on the dimensions of  
the effective (idealized) orienting unit. The fit to 
the stress-strain curve (Fig. 22)assumes a volume 
per unit v of  3 .150nm 3, corresponding to some 22 
repeat units or 2 to 3 times the length of  Lovell 
and Windle's runs o f  uniform conformation. 

This volume, with the aspect ratio of  1.46, gives 
the ellipsoid shown in comparison to the PMMA 
chain in Fig. 24 (again for a packing density of  
0.6). The aspect ratio is much smaller than for 
PET, which is perhaps to be expected since the 
cross-section of  the PMMA chain is considerably 
greater than that of  PET, especially when taken in 
comparison to the monomer repeat distance. The 
size, in comparison to the typical run of  uniform 
conformation, is plausible too: it points to such 
segments not quite moving independently, but 
interacting with their neighbours such that motion 
is "correlated" over a region encompassing the 
equivalent of  two to three segments. We conclude 
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that the idealized orienting unit for PMMA appears 
to be plausible in molecular terms. 

3.4. Poly(vinyl chloride) 
The development of orientation as measured by 
(P2) with strain in poly(vinyl chloride) (PVC) is 
rapid even above Tg. Taking the l l0~  data of 
Hibi e t  al. [16] for unplasticized PVC, with their 
estimate of Ago, we obtain SNOCP ~ 0.61, which 
matches almost exactly the pseudo-affine SNOCP 
of 0.6. It would be impossible to fit the two-mode 
model to such a high SNOCP for any reasonable 
value of K (in fact, for any K above 1.06), and the 
close fit to the pseudo-affine scheme points 
strongly to crystallites as the chief source of the 
measured orientation. Although Hibi e t  al. regard 
their material as "non-crystalline", their results 
agree with those of Robinson e t  al. [ 17], which the 
latter authors interpret in terms of crystallite 
orientation. 

Studies on commercial PVC [18, 19] indicate a 
lower SNOCP, but this may well be associated 
with the presence of plasticizers. 

3.5. Natural rubber  
The properties of natural rubber vary greatly 
depending on the method of preparation and the 
(often complex) composition of the material. The 
initial modulus varies according to cross-link den- 
sity, but typical values would lie in the range 1 to 
2 MPa [20-27], and such values would point on 
the basis of Equation 37 to a unit volume of some 
few cubic nanometres, i.e., some tens of repeat 
units. 

Optical orientation data are more difficult to 
interpret. Values for the stress-optical coefficient 
will include both stress-related and orientation- 
related contributions, while considerable uncer- 
tainty remains over the magnitude of the intrinsic 
birefringence, so that it is not possible to test the 
model in detail for natural rubber at this stage. 
Treloar [28] reports a value of 0.0945 for the 
highest birefringence observed experimentally 
(under toad) but calculates an intrinsic birefringence 
of 0,28 on the basis of a theoretical treatment of 
the isoprene structure. However, Treloar's assump- 
tions are such that the calculation can only be a 
first approximation. Nevertheless, we may with 
reasonable confidence say that the SNOCP of 
natural rubber will be small in comparison to those 
of other polymers, indicating a unit aspect ratio 
not far above 1 and hence a relatively small orien- 

tational contribution to deformation when viewed 
in the context of a broad range of polymers. Indeed, 
natural rubber can be misleading unless it is so 
viewed. 

The strain-induced crystallization of natural 
rubber will become particularly significant at high 
strains, but it is difficult to determine a level of 
strain below which it can be neglected (if indeed 
there is one); although initial slopes should be 
unaffected unless the starting material is partially 
crystalline in the as-received condition. The stress- 
softening or Mullins effect presents a further 
problem. Several workers take care to subject their 
samples to prior deformation so that the main 
experiment will be performed on "stress-softened" 
material: however, since stress-softening is both 
incompletely understood and (more importantly) 
subject to partial relaxation with time, it may 
still affect the results to an indeterminate degree. 
For reasons such as these, the behaviour of natural 
rubber should probably be given rather less weight 
than that of better-characterized polymers. 

3.6. Sty rene-butadiene rubbers 
Styrene-butadiene rubbers (SBRs) are a com- 
mercially important group of copolymers. Some 
difficulty might be anticipated in the modelling of 
copolymer behaviour, since the two monomer 
units do not occur in any fixed sequence, and par- 
ameters such as effective unit size and aspect ratio 
might be expected to vary more than in a homo- 
polymer. The modulus will depend on the ratio of 
the constituents as well as on cross-linking: Morgan 
and Treloar [27] record data which indicate 
moduli ranging from 0.8 to 5.1 MPa. 

The Kuhn-Griin theory for the optical behav- 
iour of rubbers has been generalized by Shindo 
and Stein [29] to systems with more than one type 
of statistical segment, though even when their 
modified theory is applied to polybutadiene 
(where the two types of segment are effectively 
the cis and trans conformers, and are thus not very 
dissimilar) there is some discrepancy between 
results from unswollen and solvent-swollen 
material. The stress-optical coefficient falls as the 
proportion of styrene is increased [27], but to 
follow the corresponding trend in v would require 
a knowledge of the variation of intrinsic birefrin- 
gence as well. 

Doherty et  al. [30] make concurrent measure- 
ments of stress, strain and birefringence: their 
birefringence--stress graph (their "Fig. 3") suggests 
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a maximum birefringence near 2.5 x 10 -2 - t h o u g h  
this will include both stress and orientation com- 
ponents. I f  we neglect the stress birefringence, we 
obtain (for the 0 ~ C data): 

Go ~ 0.45 MPa 

SSOC ~ 3 .2x  10 -gPa -1 

SNOCP ~ 5.7 x 10 -2 

Using the procedure given above, we obtain an 
aspect ratio ranging from 1.27 at K = 3 (X~ aax = 
1.16, Xm~ = 3.48) to 1.36 a t K  = 7 (X~ aax = 1.21, 
) k m a  x = 8.44). A choice of  K near to the latter 
would give a maximum strain similar to that found 
experimentally (Doherty et  al.'s "Fig. i " ) ,  i.e. 
about L = 8. The K = 7 parameters would also 
indicate Dqo ~ 1.15, and hence v ~ 9.650 nm3; for 
comparison, the monomer  repeat unit volumes are 
0 .094nm 3 for butadiene and 0 .165nm 3 for 
styrene. 

The Shindo-Stein copolymer analysis is not 
applied by Doherty et  al. to their results. They do 
apply a "conventional" non-Gaussian analysis 
(following Treloar and Riding [31, 32]), but 
obtain what would appear to be rather poor 
agreement with stress-strain (their 'Fig. 1") and 
birefringence-strain ("Fig. 2") data. The SBR is a 
worthwhile system to study, in comparison to 
natural robber, since crystallization is absent; it 
is nonetheless noteworthy that the upturn in the 
stress-strain curve at high strains remains clearly 
visible. 

3.7. Comparison with conventional models 
The expressions for (P2(cos~b)) given by, for 
example, Nobbs and Bower [33], allow the affine 
SNOCP to be calculated easily for a chain of  n 
equivalent random links. To match such a calcu- 
lation to experiment will, as anticipated in Part I, 
often require a value for n which is both variable 
and, at low strains, very small. The estimate of  
SNOCP for a s tyrene-butadiene rubber given 
above would suggest n "~ 11 (neglecting any stress 
birefringence), while the data for PMMA and PET 
discussed above point to n < 10, which calls into 
question the applicability of  an affine statistical 
approach. Natural rubber can now be seen as 
something of  an exception to the general picture, 
requiring a reasonably large n (some tens of  links, 
depending on the intrinsic birefringence assumed). 

The pseudo-affine deformation scheme predicts 
a fixed SNOCP of  0.6, well above anything which 

Aspect r~tio 1.5 

h 6 

<P2> 

Aspect ratio 3 

/ / /  K = 7  

/ /  n =10~ ~ / / a f t ' m e  - -  ~ ~ ~ 

k 6 

Figure 25 Orientation-strain relationship predicted by 
the two-mode model (dashed curves) in comparison to 
other deformatior~ schemes. 

the two-mode model as so far developed could 
predict with plausible values for aspect ratio and 
constraint. However, it is below the glass tran- 
sition, where time and strain rate become impor- 
tant, that the pseudo-affine scheme is of  most use 
with non-crystalline polymers. The introduction of  
rate effects into the two-mode model would lead 
to greatly increased SNOCPs; but that is the sub- 
ject of  Part 3 [34]. 

Going to moderate strains, we first underline 
that the upturn in the stress-strain curve, and the 
finite limiting extension ratio, are inherent and 
indeed fundamental features of  the two-model 
model, even at its simplest stage of development 
- an important contrast to the Gaussian model 
which represents the affine approach in its simplest 
form. The (P2)-strain plot is, as illustrated by 
Fig. 25, intermediate between the pseudo-affine 
and typical affine predictions. The slope at low 
strain increases markedly with increasing con- 

2029 



straint (decreasing K) and - less markedly - with 
increasing aspect ratio. (P4) and higher order 
Legendre polynomials are discussed below: they 
remain near zero until the limiting strain is 
approached, and a tendency to small negative 
values of (P4) is most apparent at larger aspect 
ratios (cf. Fig. 27). 

All the (P2n)-strain plots have the advantage of 
being independent of the volume v per orienting 
unit: they are thus a particularly useful measure of 
the behaviour of the two-mode model. 

3.8. Cross- l ink dens i ty  
The orientational component of deformation, and 
hence the orientation-true stress relationships, are 
independent of the constraint parameter K (except 
in a secondary way via any "coupling" between 
the two deformation modes). This fact corre- 
sponds to the experimental observation that the 
stress-optical coefficient is, to a first approxi- 
mation, independent of cross-link density. The 
relationship of K to the effective density of cross- 
links ("mechanical" as well as "chemical") is dis- 
cussed in Appendix II, where it is suggested that 
an analogue of cross-link density is the quantity 
K-3/2. 

With this suggestion, we make the observation 
that plausible values of the model parameters lie 
in a range where an approximately linear relation- 
ship between K -3/2 and the initial modulus holds 
(Fig. 26) - in agreement with the experimentally 
observed relationship between modulus and cross- 
link density. 

3.9. Higher order spherical harmonics 
Conventional models for rubber-like deformation, 
based on the affine assumption, predict low pos- 
itive values of (P4(cos ~)) in uniaxial tension at all 
strain up to the n 1/2 limit. The relatively few 
experimental data available (e.g. [5, 6] for PMMA) 
indicate that (/~ does indeed remain low even at 
high strains. However, the negative sign of some of 
the experimentally-determined values of (P4), par- 
ticularly at low strains, does not accordwith the 
affine scheme. 

The relationship between (/~ and (P2) is a use- 
ful characteristic of a deformation scheme, show- 
ing - at least in the uniaxial geometry - l i t t l e  
dependence on the affine n and no dependence on 
the parameter K in the two-mode model. The 
relationship is shown, for low degrees of orien- 
tation, in Fig. 27. In general the two-mode model 

1.5 
D~ 

1.0 

0 0.3 

Aspect r ~ l  

011 K_a/2 o.'2 

Figure 26 Initial modulus  (in units of  q) Dqo against 
K-3/~. The abscissa is analogous to a measure of crossqink 
density. 

predicts lower <P4> for given <P2> than the affine 
and pseudo-affine schemes; though this effect, 
together with the tendency for early <P4> values to 
be negative, becomes less marked as the unit aspect 
ratio approaches 1. Only limited data for (P4) 
against <P2) are available, and unfortunately some 
of the samples were of unknown strain. The alter- 
native practice of plotting <cos4@ against (COS2~) 

is less useful, since the plots discriminate less well 
between alternative deformation schemes. 

Data for PVC are shown in Fig. 28. There are 
few points present, but they fall close to the 
affine and pseudo-affine predictions rather than to 
that of the two-mode model. However, "pseudo- 
affine" behaviour may be connected with the poss- 
ible presence of crystallites in the PVC [ 17]. 

The behaviour of (P4) for PET has been studied 
by polarized fluorescence [8, 9] and laser-Raman 
techniques [10]. The latter method is subject to 
the usual uncertainties concerning line assignment 

0.04 

<~> / . / "  / /~"1 

" I i f I i i I i 
-~176 I 

o o.1 <Pz> 0.2 0.3 

Figure 27 (P4(cos ~)) against (P~(cos ~)) for the two-mode 
model  and other deformat ion schemes. - - -  pseudo- 
affine, - - - .  affine (n = 25), - -  two-mode (number  
denotes  aspect ratio). 
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Figure 28 (P4(cos ~)) against <P~(cos 0 ) ) fo r  PVC (Kashi- 
wagi and Ward [35]; NMR). Temperatures:  [] 90 ~ C; 
X 80 ~ C. Curves as in Fig. 27. 

and the Raman tensor: for some lines impossible 
values of (P4) were obtained. Fig. 29 shows results 
based on the 1616cm -~ line, regarded by the 
authors as the most useful. Most of the (/)4) values 
so obtained exceed even the pseudo-affine pre- 
diction, with the exception of those at high strain, 
which lie between the pseudo-affine and two-mode 
predictions�9 However, it will be noted below that 
laser-Raman values of (P4) for PMMA fail to agree 
with those from NMR and WAXS: the technique 
should therefore be treated with reserve so far as 
(/~ is concerned. 

The PF data for PET (Fig. 29) lie close to the 
pseudo-affine curve, but Nobbs et aL [8] suggest 

Nobbs eta/. [8,9] PF 
• Purvis and Bower [10] RQman 1616 cm -I 

1.0 

* * * * *  / o  e~ // 

0.6 A /  

i i  | / 

/ / /  mx~x x i 1~  

0.2 /Y "~ 
c~ x /TX I l 

o.o: ~ , /  , 
0.0 0.2 0.4 0.6 O.B 1.0 

< P z )  

Figure 29 (P4(cos ~b)) against (P2(cos 4>)) for PET drawn at 
80 ~ C. (A) Affine (n = 25, bu t  all n > 5 are indistinguish- 
able on this scale); (B) pseudo-affine; (C) two-mode 
(aspect ratio 3). 

#, 

0.04 / / . "7  

-0.0 

i i 
0 0.1 (P2) 0.2 0.3 

Figure 30 <P4(cos @)> against (P2(cos $)> for PMMA drawn 
at temperatures  in the range 115 to 160~  (Kashiwagi 
et al. [4]; NMR). - - - -  affine (n = 25); - - -  pseudo- 
affine; - -  two-mode (aspect ratio 1.46). 

that this may be fortuitous, since no allowance 
was made for the fact that the fluorescent mol- 
ecules do not necessarily lie parallel to the polymer 
backbone chains. They deduce that that fluor- 
escent molecules tend to be more highly oriented 
than the chains. If this is so, the (P4)-(P2) relation- 
ship need not be the same as for the chains: 
indeed, the fluorescent additive molecules can be 
visualised as akin to the "floating rods" to which 
the pseudo-affine model strictly applies. While 
these experimental data for (P4) in relation to 
(P2) do not provide support for the two-mode 
model, the uncertainties in both techniques pre- 
clude firm conclusions. 

Data for PMMA have been obtained by WAXS, 
NMR and laser-Raman spectroscopy. Fig. 30 
shows NMR data: scatter is considerable, but there 
is evidently a tendency towards negative (/~ a 
possibility predicted by the two-mode model, but 
by neither the affine nor the pseudo-affine scheme. 
WAXS data (Fig. 31) again exhibit considerable 

0.04 
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- 0.04 

I'lL 

i i I 

o oJ 

Figure 31 (P4(cos qs)) against 

' ' 0'.3 0.2 

(P~(cos 40) for PMMA 
deformed at 150 ~ C ([5]; WAXS). 
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scatter, but most points lie closer to the two-mode 
line than to other predictions (the solid curve cor- 
responds to the aspect ratio of  1.46 suggested 
above for the orienting unit in PMMA). By con- 
trast, the laser-Raman data of  Purvis and Bower 
[38] would predict very much higher (/~ at given 
(P2), than any of  the deformation schemes would 
predict. 

In regard to (P6(cos ~)), we note only that pre- 
dicted values remain low at all accessible strains, in 
line with such experimental indications as are 
available. 

3.10. Possible variation of average 
constraint with strain 

It is clearly possible that the most appropriate 
values of  the model parameters may change with 
stress, strain, or temperature. Indeed, it would 
perhaps be surprising if the "average constraint" 
on a mobile unit did not change with increasing 
deformation. Changes in aspect ratio and v are less 
easily visualized (except possibly for large step 
changes connected with a transition from "bundle" 
motion to independent chain motion). Small 
changes in v may be due to the fact that defor- 
mation is not perfectly isovolumetric. The required 
trend in K may be followed by considering an 
experimental or ientat ion-strain plot, selecting an 
appropriate aspect ratio, and using an iterative 
method to determine, where possible, the K 
required to match the model to the data at each 
point - a procedure analogous to that employed 
in Part 1 to fit the affine deformation scheme to 
experiment by allowing a changing n, the number 
of  equivalent random links per chain. 

Taking the case of  PET drawn at 80~ and 
again setting the unit aspect ratio to 3, we obtain 
the trend shown in Fig. 32. At low strains, where 
the values of  (P2) are low and the predicted (P2)-  
strain curves for different paramete r  values are 
close, we inevitably find considerable scatter. At 
moderate strains, a clear trend is visible, with the 
"average constraint" falling off  only very slowly 
with increasing strain. This may be interpreted, 
as indicated above, in terms of the "pulling-out" 
of  some of the intertwined chains*. One may 
expect this behaviour to be non-recoverable, per- 
haps helping to account for the irrecoverable com- 
ponent of  strain in PMMA at 150 ~ C. Alternatively, 
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Figure 32 "Average constraint" for PET drawn at 80 ~ C as 
a function of extension ratio: derived from (P2)-strain 
data, assuming ratio 3. �9 Cunningham et al. [7], birefrin- 
gence; �9 Purvis and Bower [10], Raman, 1616 cm -1 line, 
"model B"; o Nobbs et al. [8], analysed as in [9], polar- 
ized fluorescence; �9 Nobbs et al. [9], birefringence; 
c) Nobbs et aL 19], PF; [] Rietsch et al. [11 ], birefringence. 

as indicated above, the decline in "constraint" 
may be associated with an increasing ratio of  trans 

to gauche  conformers. In this case, the mean 
aspect ratio may also change. 

Similar behaviour is shown in Fig. 33 for 
PMMA, taking the aspect ratio of  1.46 derived 
above and this time analysing data relating to 
various temperatures. No intrinsic birefringence 
figure is quoted by Shishkin and Milagin [39], but 
for the purposes of  Fig. 33 an approximate con- 
version to (P2) has been made using a value ~x/l 0 = 
4.7 • 10 -3, based on NMR and WAXS studies of  
the UMIST series of  uniaxially drawn "Perspex" 
specimens [4, 15]. 

3.1 1. O r i e n t a t i o n - s t r e s s  b e h a v i o u r  
Though the experimental (P2) against stress plot 
for typical rubbers is approximately linear at low 
stresses, it levels off  very clearly if the range of 

strain is sufficient (see for example [30] on natural 
rubber and SBR). The two-mode model, unlike the 
simpler forms of  the affine theory, predicts such a 
decrease in gradient - though a full comparison 
with experimental stress-optical data would be 
possible only if one were able to separate stress 

*This cannot apply to topological entanglements rigorously defined, unless some bond scission takes place so as to 
allow it. Such scission is by no means impossible, though one would perhaps expect it to be significant only at high 
stresses. 
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Figure 33 "Average constraint" for PMMA as a function 
of extension ratio: derived from (P2)-strain data, 
assuming aspect ratio 1.46. �9 Brown and Mitchell [5], 
150~ a Shishkin and Milagin [39] (approximate), 
125 ~ C; [] ibid., 140 ~ C; �9 ibM., 190 ~ C. 

birefringence and orientation birefringence con- 
tributions. 

4. Summary 
The raison d'etre for the two-component model is 
its potential to describe the differences :between 
glassy and rubbery orientation-strain data. For 
it to be of  value, it must be able to predict the 
deformation behaviour typical of the rubbery 
state at least as successfully as the existing 
theories. The most complete sets of  stress- 
orientation-strain (SOS) data for rubber-like 
deformation refer to non-crystalline PET and 
PMMA above the glass transition: in each case, 
data obtained by a variety of  techniques are avail- 
able. There is some question as to whether PET at 
80 ~ C can be considered completely non-crystalline, 
but this problem does not arise with atactic 
PMMA, for which a detailed conformational model 
also exists. The SOS data for natural rubber are all 
based on birefringence measurements, which means 
that absolute plots of  (P2) against strain are not 
available. Furthermore substantial strain-induced 
crystallization sets in for natural rubber extended 
beyond about 0.7 Xmax- 

Figs. 19, 20, 22 and 23 show that the two- 
component model is able to predict the observed 
stress-strain and orientation-strain curves for 
rubbery PET and PMMA. For each polymer, the 
same pair of  structural constants, aspect ratio and 

constraint parameter K, enables both types of  
experimental data to be fitted. This is in contrast 
to the affine model, where the (P2) against strain 
data can only be fitted if n, the number of  equiv- 
alent random links per chain, is allowed to change 
drastically with strain (cf. Figs. 2 and 3 of  Part 1). 
The values of  aspect ratio of  the orienting unit 
(approximately 3 for PET and 1.5 for PMMA) are 
not unreasonable in view of  the likely molecular 
run lengths of  the underlying conformations, and 
the characteristic volumes necessary to scale the 
stress-strain predictions (0.550rim 3 for PET and 
3.150 nm 3 for PMMA) are also molecularly reason- 
able. It thus appears that the two-component 
approach is able to predict the rubber behaviour 
of  PET and PMMA rather better than the affine 
model with constant n. 

For natural rubber the affine model is of  course 
successful in accounting for the SOS data, although 
the question of  the intrinsic birefringence, and 
hence of  the absolute magnitude of  molecular 
orientation, must remain open. A close fit to high- 
strain data would be difficult to obtain with the 
two-component model: if one were to comment 
from the standpoint of this model alone, the 
discrepancy might well be ascribed to strain- 
induced crystallization. 

At this stage, we should ask why the affine and 
two-component models should give different pre- 
dictions of  rubbery behaviour, for in one sense it 
might have been convenient if the two-component 
model were to have reduced to the affine for the 
rubbery case. We see the difference in the fact that 
the affine model deals with molecules isolated 
from their environments, and the only way in 
which a chain unit can be acted upon by an applied 
tensile stress is by the transmission of  the stress 
along the unit's own chain: the behaviour of  the 
unit is then directly linked to strain. In the two- 
component approach, a chain unit is considered as 
responding to its local stress field, which is trans- 
mitted by the environment of  neighbouring chains 
as well as along the unit's own chain. 

This point can be illustrated by considering the 
effect of  stress on the unit A in the chain sketched 
in Fig. 34. If  the chain is truly isolated, the effect 
of  a tensile stress will initially be to rotate A away 
from the tensile axis, since it is rotation in this 
sense which can contribute to an increasing separ- 
ation of  the chain ends. In the two-component 
model, where the unit response is controlled by 
its local stress field, the tensile stress will have two 
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Figure 34 Illustration of the possible influence of the 
local stress field on a chain element "A". The consequent 
rotational alignment is in the opposite sense to that which 
result if the molecule were isolated and its end moved 
apart. 

competing effects on A. It will tend to align it 
with the axis (the orientational component) and at 
the same time tend to rotate it in the other direc- 
tion, thus eliminating the re-entrant loop from a 
to a'.  In essence, then, the two-component model 
is particularly disfavouring the orientation of  the 
unit normal to the tensile axis. 

The most striking difference between the affine 
and two-component predictions concerns (/~ 
Plots of  (P4) against stress (Fig. 15) and against 
strain (Fig. 16) for the two-component model 
show that this orientation parameter is slightly 
negative at low strains. In contrast, the affine 
model predicts low but positive values of  (/~ the 
two models are compared in this respect in the 
plots of  (/~ against (P2) of  Fig. 27. The sign of 
(P4} at low strains should thus provide a distinctive 
test of  one model against the other. However, the 
available (P4) data are tantalising on this point, 
for within the considerable scatter those for PVC 
and PET are if anything positive, while those for 
PMMA tend to be negative (it should perhaps be 
pointed out that any vestige of  crystallinity would 
strongly bias (P4) to positive values). The issue of  
whether the two-component model is actually 
better at describing rubbery behaviour must thus 
remain open and await further and better data. We 
now move on to consider the influence of  rate 
effects on each of  the components in the model, in 

relation to deformation in the glassy state. This is 
done in Part 3. 

Appendix I: The geometry of an ellipsoid 
of revolution 
An ellipsoid of  revolution is usually described by 
the equation 

x 2 y2 g 2 
- -  - - +  = 1 ( A 1 )  a2 + a 2 

where a, l are the semiaxes and I is parallel to the 
axis of  revolution z. 

For our purposes we want to use coordinate 
axes parallel to those of  a macroscopic body such 
as is shown by Fig. 35. Let these axes be u, v, w,  

with w vertical and u, v lying in our "sampling 
plane". 

Consider a typical ellipsoidal unit with its z- 
axis at an angle q5 to the specimen w-axis. We take 
y ,  v parallel and suppose 4~ to lie in the u - w  plane 
(which is all right since we have cylindrical sym- 
metry). With a suitable choice of  origin it is possible 
to transform Equation A1 using the following 
transformation matrix: 

co 0si  ll  I1 lit 
-- sin ~b 0 cos ~bJ 

(A2) 

Equation A1 then becomes (abbreviating sin ~b = s, 
cos  ~ = c):  

sampling 
plane 

/ '7 

U 

~V 

Figure 35 Coordinate axes of cylindrical body showing 
(enlarged) ellipsoidal unit. 
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U2C 2 -~ W2S 2 "-~ 2UWSC V 2 

a2 I- a2 

U2S 2 "~ W2C 2 - -  2uwsc  
q 12 = 1 (A3) 

Intercept with sampling plane 
To calculate the area of  our sampling plane we 
consider (Fig. 36) an ellipsoid whose axis makes an 

angle  0 with the plane normal and whose centre 
lies a distance h from the plane. Such an ellipsoid 
will make an intercept o f  area Ai with the plane. We 
put w = h in Equation 13 and after rearrange- 
ment obtain 

U 2 - - A r ~  + h  2 + + - -  
a 2 )-g a 2 

+ 2uhsc -- = 1 (14)  

This is still a bit clumsy, so we recall that the 
eccentricity e of  an ellipsoid is defined by 

a 2 = 12(1--e  2) (A5) 
and that 

sin2r + cos20 = 1 
giving 

u 2 h z v 2 u h s c  e2 = 
a - g ( 1 - s 2 e 2 ) + - a g ( 1 - c 2 e 2 ) + - a ~ +  2 - ~ - -  1 

(A6) 
Substituting 

hse x e z 
U r = U + - -  

1 --  (se) 2 

a' = a[1 -- (se) 2 -- (h/l)2] 1/2 

[ 1 - (se) 2 ] 

b' = a [1 - -  (se)  2 - -  (h/l)2] 1/2 

[ 1  - (se)211/2 

/ 
T:v  :QmpL,  

Figure36  Cross-section through ellipsoidal unit and 
"sampling plane". 

allows us to write Equation 16  in the form 

U r2 V 2 
- - + - - = 1  
a'2 b'= 

(A7) 

i.e., the intercept is itself elliptical, with area 
~atb  r , or  

rra 2 
A i  - [1 - (se)2]  3n [1 - (se) 2 - (h/ l)  21 ( A 8 )  

We now make a convenient substitution: 

Z 2 = 1 - - ( s e )  2 (19)  
giving 

2 
A i  = rra2 ( Z  - -  (h / l )  2) 

Za (A10) 

Referring again to Fig. 36, it is easily shown (by 
putting Ai = 0 in Equation A10) that 

H = 21Z (A11) 

The mean area of  intercept (Ai) made by our ellip- 
soid within the "slice" of  height H can then be 
found: 

f A i (  h )dh 

(Ai) - with limits h = -- IZ,  + IZ 

yah 
2rra 2 

3Z 
(A12) 

Ene rgy  a r g u m e n t  
Consider the ellipsoid in Fig. 37. If the ellipsoid 
rotates by dO, the applied stress o (acting radially 
inwards) does work dW, given by 

dW = force x distance 

= o 2 r r R H d R  

= o H d A  (since dA = 2rrRdR)  

2 IZo  d(A i) 
= x x dZ 

a dZ 

- -  21Zo 2 rra 2 
- - -  x - - x - -  dZ 

c~ 3 Z2 x (using Equa t ionAl2)  

= --  V e O ( 1 / Z ) d Z  (113) 

where a is the packing density, and Ve is the 
volume per ellipsoid, given by 

4rra2l 
G -  

3a 

Hence, integrating from Z = 1 (i.e. 0 = O) to some 
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Figure 3 7 Orientational deformation: (a) three- 
dimensional (b) in cross-section. 

general value of  Z, 

W = -- Veoln(Z) (A14) 

An argument analogous to our "first approxi- 
mation" gives: 

p ' (Z)dZ ~ D(Z)  x (21Z/L) x exp (-- W/kT) x dZ 
(A15) 

We know the degeneracy D(Z)  in terms of  4): 

D(4))d4) = sin(4))d4) 
but since 

Z 2 = 1 -- (se) 2 
we have 

dZ 
2Z - 2sce 2 

and also d4) 

C 2 

Hence 

= 1 - - s  2 = (1 / e ) [Z2- - (1 - -e2 ) ]  (A16) 

D(Z)dZ  = sdZ(d4)/dZ) 

-- sZdZ 
sce 2 

Z d Z  
e [Z 2 -- (1 -- e2)] in (A17) 

[taking the negative root to give a positive D(Z)]. 
Also 

exp (-- W/kT)  = exp [(Veo/gT)ln(Z)l  = Z "  

(A18) 
where 

q = Vea/kT 
Hence 

2lZ 1 Z Z q d Z  
p ' (Z )dZ  ~ - - ~  X e X [ z 2  (1_e2) ]1  n (A19) 

We make a further useful substitution 

= arc cos (m/Z)  (A20) 

where m 2 = (1 --e2),  so that 

dZ = (Z2/m)sin qJ d~ = m sin ~ sec 2 ~ d~ 

and 
sin $ = (1 /Z)[Z 2 - ( 1  --e2)] In 

Equation A19 can now be written as: 

2l 1 
p'(~)dqJ ~ - - x - - ( m  sec ~)q§ (A21) 

X em 

E x t e n s i o n  ra t io  
The total area of  a cross-section through our 
assemblage, intersected by N units, is now given by 

A f A i (Z)p ' (Z )dZ  

N (A22) 
a [ p ' (Z)dZ 

3 

with limits 4) = O, Z = 1 
and4) = 7r/2, Z = ( 1  - -e2)  1/2 

This is 
q = 0 we can use two standard integrals 

i 1 sin x n -- 2 
secnx dx - x - -  

n - - 1  cosn-lx + n - 1  

f (1 /Z )p ' (Z )dZ  
= ~ '12 (1 - -e  2) 

a f p ' ( Z ) d Z  

sec q+2 ~./d~O 
1 

=_ 2/ ia2  
d 

am fsecq+3~ 0 dff 

with limits ~ = arc cos m, 
= arc cos 1 = 0. 

easily evaluated numerically, but when 

f sec x d x  = in (sec x + tan x) 

(A23) 

(A24) 

s e c n - 2 x  dx 

(125) 

(A26) 
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to give the following expression for the initial I f  we abbreviate f sec q+n ~ dff = I n, Equation A30 
area Ao: simplifies to 

Ao 1 rra 2 (tan if) 
- -  --= - - X - - •  

No 3 a m  

1 7ra 2 
= ~ x - - •  

o~m 

(sin S/cos 2 ~)  + f sec ~ d$ 

( l /m) (1  - - m 2 )  u2 

[(1 - -m2) l /2 /m 2 ] + in {[1 + (1 --m2)1/2]/m} 

4 [ 
= - - r r a  2 l + - - i n  

3a e 
(A27) 

Hence, i f N  = No: 

A0 2m 1"2 secq+3 
r d~ 

---- ~ X 
A {1 + (m2/e) in [(1 + e) /ml}  fse@+2 

d e  

(A28) 

This is an expression for the orientational com- 
ponent Xo of the extension ratio. Its maximum is 
found by letting q tend to infinity, so that ~ = 0 
for all units: 

[ X~ na~ = 2 l + - - l n  (A29) 
e 

O r i e n t a t i o n  f u n c t i o n s  

To obtain the Legendre polynomials P2, we have 
to evaluate integrals such as 

f cos q~p(qS)d~b 
(cos 2 ~) = (A30) 

f p (~b)dq~ 

where, if W is the energy associated with a unit at 
angle q~, 

p(40dO ~ D(40exp (-- W/kT)dO (A31) 

We again work in terms of the variable Z; we sub- 
stitute for p(40d~ using Equations A17 and A18, 
and for cos2q~ using Equation A16. Then: 

1 - - Z Z q d Z  
p ( Z ) d Z  ~ - x 

e [Z2--  (1 -- e2)] u2 

_ mq+ 1 
- -  - -  s e c q + 2 ~  d ~  (A32) 

s 

and 

cos2q~ = 1 [Z2 (1 _ e 2 )  ] _ 1 - e  2 
e e 2 

- -  (sec 2 ~ -- 1) 

(A33) 

m 2 / 4 - - / 2  
(cos2r = -~- x I2 (A34) 

from which (P2(cos q~)) may easily be found. By a 
similar method: 

m 4 1 6 - - 2 / 4 + / 2  
(cos 4 q~) = --e4 X 12 (A35) 

and so on for as many (P2.) as we require. 

Appendix I1: The constraint concept and 
cross-linking 
We can compare the "constraint" idea introduced 
above with the molecular cross-linking by the fol- 
lowing argument, if we assume that the fractional 
constraint is primarily to be associated with inter- 
chain cross-linking. Consider an assemblage of 
chains connected by chemical and/or mechanical 
cross-links, with a "chain segment" defined as the 
section of a molecule between two such cross- 
links. Let the number of  chain segments per unit 
volume be Ns, and neglect chain ends. I f  the cross- 
links are tetrafunctional (the meeting point of  four 
chain segments), their number per unit volume will 
be Ns/2 ,  and the mean volume per crossqink 2/Ns: 
we can imagine each link being surrounded by a 
local 'cross-link region" of  mean volume 2IN s. 

Assume that at zero strain the segments are 
randomly oriented: a "slice" of  area Ao through 
the assemblage will then, on average, cut through 
a number of  "cross-link regions" given by 

Ao 
(2INs) 2/3 

NOW suppose we go to maximum extensional 
strain. I f  we take the stress to be uniaxial and the 
deformation affine, the number of  "cross-link 
regions" cut by our slice will remain the same. But 
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the number of  chains cut - or the number of  
"units" intersecting the sampling plane - will at 
maximum extensional strain be simply N*. 
Remembering that there are twice as many chain 
segments as crosslinks, we can write 

N* - 2Ao 
(2/Ns)2/s (B1) 

We can also put N* = A/Ae, where A is the area of  
the sampling plane and Ae is defined as the mean 
cross-sectional area per chain cut (which will 
depend, of  course, on the orientational component 
of  strain). Hence 

Ao (2INs) 2/3 
- (B2) 

A 2A e 

The corresponding expression given by our model 
at maximum extensional strain is simply 

Ao No Aeo (B3) 
A - N  --~h~ = KXo = KA--- ~ 

where Aeo is the value of  A e at zero strain. Hence, 
equating the two expressions 

(2/Ns) 2/3 
K - (B4) 

2A~o 
so that the cross-link density Ns/2 will be propor- 
tional to (K) 3/z, with the constant of propor- 
tionality (2Ae0) -3/2 easily accessible from a knowl- 
edge of chain cross-section and packing density. 

For the first approximation model, Aeo is 
simply twice the chain cross-section divided by 
packing density; if we take a value of 0.20 nm 2 for 
A~o and assume a packing density of 0.5, then the 
constant of  proportionality becomes about 
5 x 1028. Taking K =  3 then gives a cross-link 
density of approximation 102sin -3, which is about 
the same as the Gaussian theory suggests for a 
rubber with an initial modulus (in uniaxial tension) 
of 2.5 MPa at 300K. This would correspond to a 
rather highly cross-linked network. 
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